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Summary. We propose a new penalized approach for variable selection using a

combination of minimax concave and ridge penalties. The proposed method is

designed to deal with p ≥ n problems with highly correlated predictors. We call

the propose approach the Mnet method. Similar to the elastic net of Zou and

Hastie (2005), the Mnet also tends to select or drop highly correlated predic-

tors together. However, unlike the elastic net, the Mnet is selection consistent

and equal to the oracle ridge estimator with high probability under reasonable

conditions. We apply the coordinate descent algorithm to compute the Mnet

estimates. Simulation studies show that the Mnet has better performance in

variable selection in the presence of highly correlated predictors than the elastic

net method. An example is used to illustrate the application of the Mnet method.

Some key words. Correlated predictors; Minimax concave penalty; Oracle prop-

erty; p > n problems; Ridge regression.

1 Introduction

There has been much work on penalized methods for variable selection and estimation in

high-dimensional regression models. Several important methods have been proposed, which

include estimators based on the bridge penalty (Frank and Friedman 1993), the `1 penalty or

the least absolute shrinkage and selection operator (lasso, Tibshirani 1996; Chen, Donoho

and Saunders 1998), the smoothly clipped absolute deviation (scad) penalty (Fan and Li

2001), and the minimum concave penalty (mcp, Zhang 2010). These methods provide a com-

putationally feasible way for variable selection in high-dimensional settings. Much progress

has been made in understanding the theoretical properties of these methods.

While these methods have many attractive properties, they also have some drawbacks.

For example, as pointed out by Zou and Hastie (2005), for a linear regression model with

p predictors and sample size n, the lasso can only select at most n variables; it tends to

only select one variable among a group of highly correlated variables; and its prediction

performance is not as good as the ridge regression if there exists high correlation among

predictors. To overcome these limitations, Zou and Hastie proposed the elastic net (Enet)

method, which uses a combination of the `1 and `2 penalties. Yuan and Lin (2007) obtained

a result for the Enet to select the true model in the classical settings when p is fixed.
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Jia and Yu (2010) studied the selection consistency property of the Enet estimator when

p � n. They showed that under an irrepresentable condition and certain other conditions,

the Enet is selection consistent. Their results generalize those of Zhao and Yu (2006) on

the selection consistency of the lasso under the irrepresentable condition. But the Enet

estimator is asymptotically biased because of the `1 component in the penalty and it cannot

achieve selection consistency and estimation efficiency simultaneously. Zou and Zhang (2009)

proposed the adaptive Enet estimator and provided sufficient conditions under which it is

oracle. However, they require that the singular values of the design matrix are uniformly

bounded away from zero and infinity. Thus their results excludes the case of highly correlated

predictors and are only applicable to the situations when p < n.

Therefore, there is a need to develop methods that are applicable to p ≥ n regression

problems with highly correlated predictors and have the oracle property. Inspired by the

Enet and mcp methodologies, we propose a new penalized approach that uses a combination

of the mcp and `2 penalty. We call this new method the Mnet. Similar to the Enet, the

Mnet can effectively deal with highly correlated predictors in p ≥ n situations. It encourages

a grouping effect in selection, meaning that it selects or drops highly correlated predictors

together. In addition, because the Mnet uses the mcp instead of the `1 penalty for selection,

it has two important advantages. First, the Mnet is selection consistent under a sparse Riezs

condition on the ‘ridge design matrix’, which only requires a submatrix of this matrix to

be nonsingular. This condition is different from the irrepresentable condition and is usually

less restrictive, especially in high-dimensional settings (Zhang, 2010). Second, the Mnet

estimator is equal to the oracle ridge estimator with high probability, in the sense that

it correctly selects predictors with nonzero coefficients and estimate the selected coefficients

using ridge regression. The Enet does not have such an oracle property because the shrinkage

introduced by the `1 penalty results in nonnegligible bias for large coefficients.

This article is organized as follows. In Section 2, we define the Mnet estimator and

discuss its basic characteristics. In Section 3, we present a coordinate descent algorithm for

computing the Mnet estimates. Results on the sign consistency of Mnet and its equivalency

to the oracle ridge estimator are presented in Section 4. In Section 5, we conduct simulation

studies to evaluate its finite sample performance and illustrate its application using a real

data example. Final remarks are given in Section 6. All the technical proofs are provided in

the Appendix.
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2 The Mnet estimator

Consider a linear regression model

y =

p∑
j=1

xjβj + ε, (2.1)

where y = (y1, . . . , yn)′ is the vector of n response variables, xj = (x1j, . . . , xnj)
′ is the

jth predictor vector, βj is the j regression coefficient and ε = (ε1, . . . , εn)′ is the vector of

random errors. We assume that the responses are centered and the covariates are centered

and standardized, so that the intercept term is zero and n−1
∑n

i=1 x
2
ij = 1.

2.1 Definition

To define the Mnet estimator, we first provide a brief description of the mcp introduced by

Zhang (2010). The mcp is defined as

ρ(t;λ1, γ) = λ1

∫ |t|
0

(1− x/(γλ1))+dx, (2.2)

where λ1 is a penalty parameter and γ is a regularization parameter. Here x+ is the non-

negative part of x, i.e., x+ = x1{x≥0}. The mcp can be easily understood by considering its

derivative, which is

ρ̇(t;λ1, γ) = λ1

(
1− |t|/(γλ1)

)
+

sgn(t), (2.3)

where sgn(t) = −1, 0, or 1 if t < 0,= 0, or > 0. It begins by applying the same rate of

penalization as the lasso, but continuously relaxes that penalization until, when |t| > γλ1,

the rate of penalization drops to 0. It provides a continuum of penalties with the `1 penalty

at γ =∞ and the hard-thresholding penalty as γ → 0+.

For λ = (λ1, λ2) with λ1 ≥ 0 and λ2 ≥ 0, define the penalized criterion

M(b;λ, γ) =
1

2n
‖y −Xb‖2 +

p∑
j=1

ρ(|bj|;λ1, γ) +
1

2
λ2‖b‖2, b ∈ IRp . (2.4)

We note that the Enet criterion uses the `1 penalty in the first penalty term. In contrast,

here we use the mcp. For a given (λ, γ), the Mnet estimator is defined as,

β̂Mnet(λ, γ) = argmin
b

M(b;λ, γ). (2.5)

Our rationale for using the mcp in (2.4) is as follows. As discussed in Fan and Li (2001), a

good penalty function should result in an estimator with three basic properties: unbiasedness,

sparsity and continuity. The `1 penalty produces estimators that are sparse and continuous
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with respect to data, but are biased because the it imposes the same shrinkage on small

and large coefficients. To remove the bias in the estimators resulting from the `1 penalty

and to achieve oracle efficiency, they proposed the scad penalty for variable selection and

estimation. In an in-depth analysis of the lasso, scad and mcp, Zhang (2010) showed

that they belong to the family of quadratic spline penalties with the sparsity and continuity

properties. The mcp is the simplest penalty that results in an estimator that is nearly

unbiased, sparse and continuous. Further discussions on the advantages of the MCP over

other popular penalties can be found in Mazumder et al. (2009).

2.2 Orthonormal designs

To gain some insights into the characteristics of the Mnet estimator, we look at the case

when the design matrix is orthonormal. In this case, the problem simplifies to estimation in

p univariate models of the form

yi = xijθ + εi, 1 ≤ i ≤ n.

Let z = n−1
∑

i=1 xijyi be the least squares estimator of θ (since n−1
∑n

i=1 x
2
ij = 1). The

corresponding Mnet criterion can be written as

1

2
(z − θ)2 + ρ(θ;λ1, γ) +

1

2
λ2θ

2. (2.6)

When γ(1 + λ2) > 1, the minimizer θ̃Mnet of (2.6) is

θ̂Mnet =

sgn(z)γ(|z|−λ1)+
γ(1+λ2)−1

if |z| ≤ γλ1(1 + λ2),

z
1+λ2

if |z| > γλ1(1 + λ2).
(2.7)

This expression illustrates a key feature of the Mnet estimator. In most of the sample space

of z, it is the same as the ridge estimator. Specifically, for small γλ1(1 +λ2), the probability

of the region where θ̂Mnet is not equal to the ridge estimator is also small. In Section 4, we

show that this remains true for general designs under reasonable conditions.

It is instructive to compare the Mnet with Enet. The naive Enet (nEnet) estimator is

θ̂nEnet = argmin
θ

1

2
(z − θ)2 + λ1|θ|+

1

2
λ2θ

2 = sgn(z)
(|z| − λ1)+

1 + λ2

.

The ridge penalty introduces an extra bias factor 1/(1 + λ2). This ridge shrinkage on top of

the lasso shrinkage is the double shrinkage effect discussed in Zou and Hastie (2005). They

proposed to removes the ridge shrinkage factor by multiplying the naive Enet by (1 + λ2) to

obtain he Enet estimator

θ̃Enet = (1 + λ2)θ̃nEnet = sgn(z)(|z| − λ1)+.
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Thus for orthonormal designs, the (rescaled) Enet estimator is the same as the lasso esti-

mator and is still biased.

Similarly, we can rescale θ̂Mnet to obtain the re-scaled Mnet estimator, which can be

written as

θ̂sMnet =


γ(1+λ2)
γ(1+λ2)−1

θ̂Enet if |z| ≤ γλ1(1 + λ2),

z if |z| > γλ1(1 + λ2),

which is equal to the unbiased estimator z when |z| > γλ1(1 + λ2). As γ(1 + λ2)→∞, the

Mnet converges to the Enet. As γ(1 +λ2)→ 1, the Mnet converges to the hard thresholding

rule.

For orthogonal designs, re-scaling removes the bias due to the ridge shrinkage without

significantly inflating the variance. However, it can be demonstrated numerically that for

correlated designs, rescaling can substantially inflate the variance of the Mnet estimator and

as a result, the mean squared error is increased. Also, since here we focus on the variable

selection property of the Mnet and rescaling does not affect selection results, we will not

consider rescaling in this article.

2.3 Grouping effect

Similar to the Enet, the Mnet also has the grouping effect. It tends to select or drop strongly

correlated predictors together. This grouping property is due to the `2 penalty term. The

following proposition describes this property.

Proposition 1 Let ρjk = n−1
∑n

i=1 xijxik be the correlation coefficient between xj and xk.

Suppose λ2 > 0. Denote

ξ =

max{2γ(γλ2 − 1)−1, (γλ2 + 1)(λ2(γλ2 − 1))−1, λ−1
2 } if γλ2 > 1,

λ−1
2 if γλ2 ≤ 1.

(2.8)

For ρjk ≥ 0, we have

|β̂j − β̂k| ≤ ξn−1/2
√

2(1− ρjk)‖y‖,

For ρjk < 0, we have

|β̂j + β̂k| ≤ ξn−1/2
√

2(1 + ρjk)‖y‖.

From this proposition, we see that the difference between β̂j and β̂k is bounded by a

quantity determined by the correlation coefficient. It shows that highly correlated predictors

tend be selected together by the Mnet. In particular, β̂j− β̂k → 0 as ρjk → 1 and β̂j+ β̂k → 0

as ρjk → −1.
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3 Computation

3.1 The coordinate descent algorithm

We use the cyclical coordinate descent algorithm originally proposed for criterions with

convex penalties such as lasso (Fu 1998; Friedman et al. 2007; Wu and Lange 2007).

It has been proposed to calculate the mcp estimates (Breheny and Huang 2009). This

algorithm optimizes a target function with respect to a single parameter at a time, iteratively

cycling through all parameters until convergence is reached. It is particularly suitable for

problems that have a simple closed form solution in a single dimension but lack one in higher

dimensions.

The problem, then, is to minimize M with respect to βj, given current values for the

regression coefficients β̃k. Define

Mj(βj;λ, γ) =
1

2n

n∑
i=1

(
yi −

∑
k 6=j

xikβ̃k − xijβj

)2

+ ρ(|βj|;λ1) +
1

2
λ2β

2
j .

Denote ỹij =
∑

k 6=j xikβ̃k, r̃ij = yi − ỹij, and z̃j = n−1
∑n

i=1 xij r̃ij, where r̃ijs are the partial

residuals with respect to the jth covariate. Some algebra shows that

Mj(βj;λ, γ) =
1

2
(βj − z̃j)2 + ρ(|βj|;λ1) +

1

2
λ2β

2
j +

1

2n

n∑
i=1

r̃2
ij −

1

2
z̃2
j .

Thus, letting β̃j denote the minimizer of Mj(βj;λ, γ), equations (2.6) and (2.7) imply that

β̃j =

sgn(z̃j)
γ(|z̃j |−λ1)+
γ(1+λ2)−1

if |z̃j| ≤ γλ1(1 + λ2)

z̃j
1+λ2

if |z̃j| > γλ1(1 + λ2)
(3.1)

for γ(1 + λ2) > 1.

Given the current value β̃(s) in the sth iteration for s = 0, 1 . . ., the algorithm for deter-

mining β̂ is:

(1) Calculate

z̃j = n−1

n∑
i=1

xij r̃ij = n−1

n∑
i=1

xij(yi − ỹi + xijβ̃
(s)
j ) = n−1

n∑
i=1

xijri + β̃
(s)
j ,

where ỹi =
∑n

j=1 xijβ̃
(s)
j is the current fitted value for observation i and ri = yi − ỹi is

the current residual. The calculation of z̃j is carried out using the last expression in

this equation.

(2) Update β̃
(s+1)
j using (3.1).
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(3) Update ri ← ri − (β̃
(s+1)
j − β̃(s)

j )xij for all i.

The last step ensures that ri’s always hold the current values of the residuals. These three

steps loop over all values of j and proceed iteratively until convergence. The coordinate

descent algorithm has the potential to be extremely efficient, in that the above three steps

require only O(2n) operations, meaning that one full iteration can be completed at a com-

putational cost of O(np) operations.

3.2 Pathwise optimization

Usually, we are interested in determining β̂ for a range of values of (λ, γ), thereby producing

a path of coefficient values through the parameter space. Consider the following reparame-

terization: τ = λ1 +λ2 and α = λ1/τ . Using this parametrization, we can compute solutions

for decreasing values of τ , starting at the smallest value τmax for which all coefficients are

0 and continuing down to a minimum value τmin, thereby obtaining the unique coefficient

path for which the ratio between λ1 and λ2 is held constant at α/(1− α). If p < n and the

design matrix is full rank, τmin can be 0. In other settings, the model may become excessively

large or cease to be identifiable for small τ ; in such cases, a value such as τmin = 0.01τmax is

appropriate.

From (2.7), τmax = max1≤j≤p |n−1x′jy|/α. Starting at this value, for which β̂ has the closed

form solution 0, and proceeding along a continuous path ensures that the initial values are

reasonably close to the solution for all points along the path, thereby improving both the

stability and efficiency of the algorithm.

3.3 Convexity of the objective function

The preceding remarks concerning unique solutions and continuous coefficient paths are only

guaranteed for convex objective functions. Because the mcp is nonconvex, this is not always

the case for the Mnet objective function; it is possible, however, for the convexity of the

ridge penalty and the least-squares loss function to overcome the nonconvexity of the mcp

and produce a convex objective function. The conditions required for this to happen are

established in the proposition below.

Proposition 2 Let cmin denote the minimum eigenvalue of n−1X ′X. Then the objective

function defined by (2.4) is a convex function of β on Rp if and only if γ > 1/(cmin + λ2).

The above proposition establishes the condition necessary for global convexity on IRp. In

p � n settings, where highly sparse solutions are desired, we may be concerned only with

convexity in the local region of the parameter space consisting of the covariates estimated to
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have nonzero coefficients. In this case, the above condition may be relaxed by considering the

minimum eigenvalue of n−1X ′AXA instead, where XA is a modified design matrix consisting

of only those columns for which βj 6= 0. The issue of local convexity is explored in greater

detail in Breheny and Huang (2009).

4 Selection properties

In this section, we study the selection properties of the Mnet estimator β̂Mnet in (2.5). We

provide sufficient conditions under which the Mnet estimator is sign consistent and equals

the oracle ridge estimator defined in (4.1) below.

For simplicity of notation, we write β̂ = β̂Mnet. Denote Σ = n−1X ′X. For any A ⊆
{1, . . . , p}, define

XA = (xj, j ∈ A), ΣA =
1

n
X ′AXA.

Let the true value of the regression coefficient be βo = (βo1 , . . . , β
o
p)
′. DenoteO = {j : βoj 6= 0},

which is the oracle set of indices of the predictors with nonzero coefficients in the underlying

model. Let β∗ = min{|βj|, j ∈ O} and set β∗ =∞ if O is empty, that is, if all the regression

coefficients are zero. Denote the cardinality of O by |O| and let do = |O|. So do is the

number of nonzero coefficients. Define

β̂o(λ2) = argmin
b
{‖y −Xb‖2 +

1

2
λ2‖b‖2, bj = 0, j 6∈ O}. (4.1)

This is the oracle ridge estimator. Of course, it is not a real estimator, since the oracle set

is unknown.

4.1 The p < n case

We first consider the selection property of the Mnet estimator for the p < n case. We require

the following basic condition.

(A1) (a) The error terms ε1, . . . , εn are independent and identically distributed with

Eεi = 0 and Var(εi) = σ2; (b) For any x > 0, P(|εi| > x) ≤ K exp(−Cxα), i = 1, . . . , n,

where C and K are positive constants and 1 ≤ α ≤ 2.

Let cmin be the smallest eigenvalue of Σ, and let c1 and c2 be the smallest and largest

eigenvalues of ΣO, respectively.

Denote

λn = αn
σ log1/α(p− do + 1)√

n
and τn = αn

σ
√
c2 log1/α(do + 1)√
n(c1 + λ2)

, (4.2)

where αn = 1 if 1 < α ≤ 2 and αn = log n if α = 1. So for error terms with double

exponential tails, there is an extra log n factor in the above expressions.
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Theorem 1 Assume that (A1) holds and γ > 1/(cmin + λ2). Suppose

βo∗ > γλ1 + 2λ2‖βo‖/(c1 + λ2) and λ1 > 2λ2

√
c2‖βo‖/(c1 + λ2) (4.3)

Then

P
(
sgn(β̂) 6= sgn(βo) or β̂ 6= β̂o

)
≤ π1 + π2,

where the sgn function applies to a vector componentwise and

π1 = 2K1λn/λ1 and π2 = 2K1τn/(β
o
∗ − γλ1). (4.4)

Here K1 is a positive constant that only depends on the tail behavior of the error distribution

in (A1b).

We note that the upper bound on the probability of selection error is nonasymptotic. (A1a)

is standard in linear regression. (A1b) is concerned with the tail probabilities of the error

distribution. Here we allow non-normal and heavy tail error distributions. The condition

γ > 1/(cmin + λ2) ensures that the Mnet criterion is strictly convex so that the resulting

estimate is unique. This condition also essentially restricts cmin > 0, which can only be

satisfied when p < n. The first inequality in (4.3) requires that the nonzero coefficients not

to be too small in order for the Mnet estimator to be able to distinguish nonzero from zero

coefficients. The second inequality in (4.3) requires that λ1 should be at least in the same

order as λ2.

The following corollary is an immediate consequence of Theorem 1.

Corollary 1 Suppose that the conditions of Theorem 1 are satisfied. If λ1 ≥ anλn and

βo∗ ≥ γλ1 + anτn for an →∞ as n→∞, then

P(sgn(β̂) 6= sgn(βo) or β̂ 6= β̂o)→ 0.

By Corollary 1, β̂ behaves like the oracle ridge estimator and has the same sign as the

underlying regression coefficients with probability tending to one.

4.2 The p ≥ n case

We now consider the selection property of the Mnet estimator when p ≥ n. In this case,

the model is not identifiable without any further conditions, since the design matrix X is

always singular. However, if the model is sparse and the design matrix satisfies the sparse

Riesz condition, or src (Zhang and Huang 2008), then the model is identifiable and selection

consistency can be achieved.
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Let

X̃ =

(
X

√
nλ2 Ip

)
,

where Ip is a p× p identity matrix. This can be considered an ‘enlarged design matrix’ from

the ridge regularization. The jth column of X̃ is x̃j = (x′j,
√
nλ2e

′
j)
′, where ej is the jth unit

vector in IRp. For A ⊆ {1, . . . , p}, define

X̃A = (x̃j, j ∈ A), P̃A = X̃A(X̃ ′AX̃A)−1X̃ ′A. (4.5)

Denote the cardinality of A by |A|. We say that X̃ satisfies the sparse Reisz condition (src)

with rank d∗ and spectrum bounds {c∗ + λ2, c
∗ + λ2} if

0 < c∗ + λ2 ≤
1

n
‖X̃Au‖22 ≤ c∗ + λ2 <∞, ∀A with |A| ≤ d∗, u ∈ IR|A|, ‖u‖ = 1, (4.6)

where c∗ and c∗ satisfy

0 ≤ c∗ ≤
1

n
‖XAu‖22 ≤ c∗, ∀A with |A| ≤ d∗, u ∈ IR|A|, ‖u‖ = 1.

Here we allow either c∗ = 0 or λ2 = 0, but require c∗ + λ2 > 0. Below, we simply say that

X̃ satisfies the src(d∗, c∗ + λ2, c
∗ + λ2) if (4.6) holds.

Recall do is the number of nonzero coefficients. In addition to (A1), we also need the

following condition.

(A2) The matrix X̃ satisfies the src(d∗, c∗+λ2, c
∗+λ2), where d∗ satisfies d∗ ≥ do(K∗+1)

with K∗ = (c∗ + λ2)/(c∗ + λ2)− (1/2).

Let m = d∗ − do. Denote

λ∗n = αn
σ log1/α(p− do + 1)√

n

√
c∗mα max

{
1,

√
c∗

m
√
n(c∗ + λ2)2

}
, (4.7)

where mα = 1 if α = 2 and = m1/α if 1 ≤ α < 2. Let π1 and π2 be as in (4.4). Define

π∗1 = K1λ
∗
n/λ1 and π3 = K1αn

8σc∗λ2

√
do log1/α(do + 1)

mn(c∗ + λ2)
. (4.8)

Theorem 2 Suppose that (A1) and (A2) hold. Also, suppose that

γ ≥ (c∗ + λ2)
−1
√

4 + (c∗ + λ2)/(c∗ + λ2), (4.9)

λ1 > 2λ2
√
c2‖βo‖/(c1 + λ2) and βo∗ > γλ1 + 2λ2‖βo‖/(c1 + λ2). Then,

P
(
sgn(β̂) 6= sgn(βo) or β̂ 6= β̂o

)
≤ π1 + π∗1 + π2 + π3.

Theorem 2 has the following corollary.
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Corollary 2 Suppose that the conditions of Theorem 2 are satisfied. If λ1 ≥ anλ
∗
n and

βo∗ ≥ γλ1 + anτn for an →∞ as n→∞, then

P
(
sgn(β̂) 6= sgn(βo) or β̂ 6= β̂o

)
→ 0 as n→∞.

Theorem 2 and Corollary 2 provide sufficient conditions for sign consistency and oracle

property of the Mnet estimator in p ≥ n situations. Again, the probability bound on the

selection error in Theorem 2 is nonasymptotic. Comparing with Theorem 1, here the extra

terms π∗1 and π3 in the probability bound come from the need to reduce the original p-

dimensional problem to a d∗-dimensional problem. Condition (4.9) ensures that the Mnet

criterion is locally convex in any d∗-dimensional subspace. It is stronger than the minimal

sufficient condition γ > 1/(c∗ + λ2) for local convexity. This reflects the difficulty and extra

efforts needed in reducing the dimension from p to d∗. The src in (A2) guarantees that the

model is identifiable in any lower d∗-dimensional space, which contains the do-dimensional

space of the underlying model, since d∗ > do. The difference d∗− do = K∗d
o depends on K∗,

which is determined by the spectrum bounds in the src. In the proof of Theorem 2 given

in the Appendix, the first crucial step is to show that the dimension of the Mnet estimator

is bounded by d∗ with high probability. Then the original p-dimensional problem reduces to

a d∗-dimensional problem. The other conditions of Theorem 2 imply that the conditions of

Theorem 1 are satisfied for p = d∗. After dimension reduction is achieved, we can use the

same argument as in Theorem 1 to show sign consistency. The role of λ∗n is similar to λn in

(4.2). However, the expression of λ∗n has an extra term, which arises from the need to reduce

the dimension from p to d∗. If 1 < α ≤ 2, c∗ is bounded away from zero and c∗ is bounded

by a finite constant, then for sufficiently large n, we have λ∗n = λn
√
c∗. Finally, We note that

our results allow c∗ → 0 and c∗ → ∞ as long as the conditions in Theorem 2 are satisfied.

Thus Theorem 2 and Corollary 2 are applicable to models with highly correlated predictors.

Finally, we allow p� n in Theorem 2 Corollary 2. For example, consider the simplest case

when the error distribution has sub-gaussian tails (α = 2) and
√
c∗/(m

√
n(c∗ + λ2)

2) ≤ 1 in

(4.7) for sufficiently large n, then we can have p− do = exp(o(n)), where o(n)/n→ 0.

5 Numerical studies

5.1 Penalty parameter selection

For the Mnet estimator parameterized according to (τ, α, γ) described in Section 3.2, there

are two tuning parameters, γ and α, in addition to the parameter τ , which controls the

overall degree of regularization. As α → 1, the Mnet becomes mcp; as α → 0, it becomes

equivalent to ridge regression. Large values of α and small values of γ tend to produce more
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sparse models; however, as is clear from Proposition 2, they are also more likely to produce

a nonconvex objective function. Proper choices for α and γ will thus depend on a number

of factors such as the relative sizes of n and p, the sparsity and signal-to-noise ratio of the

underlying data-generating process, and the multicollinearity of the covariates. Several data

driven procedures are available for tuning parameter selection. Here, as in Zou and Hastie

(2005), we use ten-fold cross validation to select tuning parameters τ , α, and, for Mnet, γ.

For both Mnet and Enet, there were 100 candidate values of τ and four candidates for α:

1, 0.9, 0.5, and 0.1. For Mnet, the candidate values for γ were 2.5 and 6. We found that

the Mnet is not sensitive to small changes in γ and that selecting γ from the two candidate

values (γ = 2.5 or 6) worked well.

5.2 Simulation studies

Our simulation studies examine the performance of the Mnet estimator in comparison with

the Enet in two distinct settings: one in which all covariates are uniformly correlated with

each other, and another in which correlation is present within small groups of covariates. In

the simulations, the magnitude of the regression coefficients β, the number of nonzero coeffi-

cients p1 , and the correlation ρ were varied and their impact on the estimation, prediction,

and variable selection properties of the two methods were investigated.

5.2.1 Uniform correlation

Covariates were randomly generated from the multivariate normal distribution with zero

mean and correlation matrix having 1 along the diagonal and correlation coefficient ρ at all

other entries. The response y was generated according to (2.1) with standard normal errors.

For each independently generated data set, n = p = 100. In the generating model, p1 of the

variables had nonzero coefficient β, while the rest were set to zero.

Estimation accuracy, measured by mean squared error (mse) is plotted in Figure 1. The

dominant trend depicted by the figure is the improvement in accuracy of Mnet relative to

Enet for large values of β. This trend should not come as a surprise, since the purpose of

the mcp component of the Mnet penalty is to eliminate the downward bias of the lasso for

large coefficients. Note, however, that the downward bias reduces variance and is capable

of improving estimation for small model coefficients. This general trend is seen for all

combinations of p1 of ρ. However, the trend is weakest in the presence of high correlation.

In such settings, cross-validation selects small values of α for both Mnet and Enet, leading

both methods to produce estimators similar to each other and to ridge regression.

The variable selection properties of Mnet and Enet, as measured by the false discovery

rate (fdr), are plotted in Figure 2. Because it lacks the built-in ability to relax downward

13
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Figure 1: Relative (to the elastic net) mean squared error for the Mnet estimator in the

uniform correlation simulation of Section 5.2.1. mse was calculated for each method on 250

independently generated data sets; the relative median mses at each point are displayed.
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Figure 2: False discovery rates for the Mnet and Enet estimators in the uniform correlation

simulation of Section 5.2.1. fdr is calculated for each method on the same independently

generated 250 data sets as 1.
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bias that Mnet possesses, the elastic net must select lower values of λ to reduce downward

bias. Doing so, however, not only reduces bias but allows additional variables to enter the

model. This results in a slight increase in the probability that covariate with a nonzero

coefficient is selected, but a much larger increase in the probability that covariates with

zero coefficients will be selected. The fdr – the proportion of selected variables that have a

coefficient equal to zero in the underlying model – measures the overall success of the method

at selecting variables that are truly related to the outcome. Mnet has a lower fdr than Enet

for all values of β, p1, and ρ depicted in Figure 2. The difference is minor for small β, but

quite drastic for coefficients with large regression coefficients.

The results in this section and the next compare the unscaled versions of Mnet and Enet.

Scaled versions of the two estimators were also investigated, but omitted from the preceding

plots for the sake of clarity. In general, the unscaled version of Mnet outperformed the scaled

version, while the scaled version of Enet outperformed the unscaled version. The differences,

however, were negligible in comparison with the differences between Mnet and Enet.

5.2.2 Grouped correlation

For the simulations in this section, a grouping structure was built into the covariates as

follows. For each covariate xij in group g, xij = ajzig + εij, where zig and εij both follow

a standard normal and aj can be adjusted as desired to vary the level of within-group

correlation. In our simulations, we used a group size of three. In addition to the grouped

covariates with positive model coefficients, independent covariates with zero coefficients were

also generated from the standard normal distribution. This produces a design matrix in

which each group consists of three correlated covariates with nonzero coefficients and with

no correlation between groups or between the groups and the covariates with zero coefficients

(i.e., the covariance matrix is block diagonal for the covariates with nonzero coefficients and

diagonal elsewhere).

In addition to specifying constant values of the within-group correlation, more realistic

mixed settings were also constructed. In the mixed correlation setting, aj was generated from

the exponential distribution with rate 1. This produces pairwise correlations among group

members that can range from 0 to 1, with a mean correlation of about 0.3. In this setting,

the correlation varies from data set to data set, but remain constant from observation to

observation within a data set.

A full series of simulations similar to those in Section 5.2.1 was conducted. However,

only the results for p1 = 6 and mixed correlation are presented in Figure 3; the results for

other values of p1 and ρ are similar. Figure 3 displays the effect of changing the size of the

regression coefficient β upon estimation accuracy as measured by mse, prediction accuracy
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discovery rate for the Mnet and Enet estimators. All results are based on the same indepen-

dently generated 250 data sets. Relative mse and mspe are calculated relative to Enet and

are based on the median of the 250 replications.

as measured by mean squared prediction error (mspe), and variable selection as measured

by fdr.

The trends previously remarked upon with reference to Figures 1 and 2 and present as well

in Figure 3. However, Figure 3 also illustrates the tradeoffs inherent in regression modeling

with correlated predictors. In comparison to Mnet, the models produced by Enet include

a large number of predictors that have been heavily shrunken towards zero; this results in

a high fdr, improved estimation for small regression coefficients, and poorer estimation of

large regression coefficients. However, the differences between Mnet and Enet with respect

to prediction are much smaller.

When the number of coefficients is large and multicolinearity is present, several models

may fit the data equally well despite large differences in their underling structure – this is

referred to as “model multiplicity” in Breiman (2001). In such cases, there is insufficient

information present in the data to guide the selection of one model versus another. Mnet

produces more sparse models, but there is no way of knowing whether this reflects the un-

derlying reality based on the data alone. In practice, scientific knowledge and research goals

may provide this guidance. It is worth mentioning, however, that the prediction accuracy of

Mnet and Enet are not always similar, even in the presence of correlation. For example, with
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a uniform (i.e., not grouped) correlation of 0.3, p1 = 32 nonzero coefficients, and β = 1.5,

the prediction error of Enet is five times larger than that of Mnet.

5.3 Rat eye expression data

We use the data set reported in Scheetz et al. (2006) to illustrate the application of the

proposed method in high-dimensional settings. For this data set, 120 twelve-week-old male

rats were selected for tissue harvesting from the eyes and for microarray analysis. The

microarrays used to analyze the RNA from the eyes of these animals contain over 31,042

different probe sets (Affymetric GeneChip Rat Genome 230 2.0 Array). The intensity values

were normalized using the robust multi-chip averaging method (Irizzary et al. 2003) to

obtain summary expression values for each probe set. Gene expression levels were analyzed

on a logarithmic scale.

We are interested in finding the genes whose expression are most variable and correlated

with that of gene trim32. This gene was recently found to cause Bardet-Biedl syndrome

(Chiang et al. 2006), which is a genetically heterogeneous disease of multiple organ systems

including the retina. One approach to finding the genes that are most related to trim32

is to use regression analysis. Since it is expected that the number of genes associated with

gene trim32 is small and we are only interested in genes that are most variable, we compute

the variances of gene expressions and consider the 500 genes with largest variances. We then

standardize gene expressions to have zero mean and unit variance.

We apply the Enet and Mnet. For both approaches, tuning parameters are selected using

ten-fold cross validation as described above. The Enet identifies 30 genes, and the Mnet

identifies 26 genes. Gene information and corresponding nonzero estimates are provided

in Table 1. The two sets of identified genes have 11 in common. Examination of Table 1

suggests that, for the overlapped genes, the magnitudes of estimates are in general not equal.

However, they have the same signs, which suggest similar biological conclusions. We further

investigate prediction performance using a 10-fold cross validation approach. The mean

squared prediction errors are 1.804 for Enet and 1.737 for Mnet. Although the prediction

performance of the Mnet is only slightly smaller than that of the Enet (which is consistent

with findings in simulation), the Mnet selects a smaller model with a more focused set of

candidate genes related to trim32, which makes it easier to carry out further confirmation

studies.
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6 Discussion

The Mnet can be applied to other regression problems, for example, in the context of the

general linear models, we can use

1

2n

n∑
i=1

`(yi, β0 +
∑
j

xijβj) +

p∑
j=1

ρ(|βj|;λ1, γ) +
1

2
‖β‖2.

where ` is a given loss function. This formulation includes generalized linear models, censored

regression models and robust regression. For instance, for generalized linear models such as

logistic regression, we take ` to be the negative log-likelihood function. For Cox regression,

we take the empirical loss function to be the negative partial likelihood. For loss functions

other than least squares, further work is needed to study the computational algorithms and

theoretical properties of the Mnet estimators.

Our theoretical results gave insights into the characteristics of the Mnet estimator. They

show that the Mnet has the oracle selection property under reasonable conditions. However,

these conditions are concerned with penalty parameters that are not determined based on

data. Whether the results are applicable to the case where the penalty parameters are

selected using cross validation or other data driven procedures is unknown. This is an

important and challenging problem that requires further investigation, but is beyond the

scope of the current paper.

7 Appendix

In the Appendix, we prove Proposition 1 and Theorems 1 and 2.

Proof of Proposition 1 The jth estimated coefficient β̂j must satisfy the KKT conditions,− 1
n
x′j(y −Xβ̂) + λ1(1− |β̂j|/(γλ1))+sgn(β̂j) + λ2β̂j = 0, β̂j 6= 0

|x′j(y −Xβ̂)| ≤ λ1, β̂j = 0.

Let r̂ = y −Xβ̂ and ẑj = n−1x′j r̂. After some calculation, we have, if γλ2 > 1,

β̂j =


0, if |ẑj| ≤ λ1,

sgn(ẑj)
∣∣∣γ(|z̃j |−λ1)

γλ2−1

∣∣∣ , if λ1 < |ẑj| < γλ1λ2,

λ−1
2 ẑj, if |ẑj| ≥ γλ1λ2;

and if γλ2 ≤ 1,

β̂j =

0 if |ẑj| ≤ λ1,

λ−1
2 ẑj if |ẑj| > λ1.
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First, suppose that xj and xk are positively correlated. Based on the above expressions, we

can show that

|β̂j − β̂k| ≤ ξ|ẑj − ẑk|,

where ξ is given in (2.8). By the Cauchy-Schwarz inequality, |ẑj − ẑk| = n−1|(xj − xk)′r̂| ≤
n−1‖xj − xk‖‖r̂‖ = n−1/2

√
2(1− ρjk)‖r̂‖. Since M(β̂;λ) ≤ M(0;λ) by the definition of β̂,

we have ‖r̂‖ ≤ ‖y‖. Therefore

|β̂j − β̂k| ≤ ξ|ẑj − ẑk| ≤ ξn−1/2
√

2(1− ρjk)‖y‖.

For negative ρjk, we only need to change the sign of zk and use the same argument. �

To prove Theorems 1 and 2, we first need the lemma below. Let ψα(x) = exp(xα) − 1

for α ≥ 1. For any random variable X its ψα-Orlicz norm ‖X‖ψα is defined as ‖X‖ψα =

inf{C > 0 : Eψα(|X|/C) ≤ 1}.

Lemma 1 Suppose that ε1, . . . , εn are independent and identically distributed random vari-

ables with Eεi = 0 and Var(εi) = 1. Furthermore, suppose that P (|εi| > x) ≤ K exp(−Cxα), i =

1, . . . , n for constants C and K, and 1 ≤ α ≤ 2. Let c1, . . . , cn be constants satisfying∑n
i=1 c

2
i = 1. Let X =

∑n
i=1 ciεi.

(i) ‖X‖ψα ≤ Kα

{
1 + (1 +K)1/αC−1/ααn

}
, where Kα is a constant only depending on α,C

and K.

(ii) Let X1, . . . , Xm be any random variables whose Orlicz norms satisfy the inequality in (i).

For any bn > 0,

P

(
max

1≤j≤m
|Xj| ≥ bn

)
≤ K1αn(log(m+ 1))1/α

bn

for a positive constant K1 only depending on α,C and K.

This lemma follows from Lemma 2.2.1 and Proposition A.1.6 of Van der Vaart and Wellner

(1996). We omit the proof.

Proof of Theorem 1. Since β̂o is the oracle ridge regression estimator, we have β̂oj = 0 for

j 6∈ O and

− 1

n
x′j(y −Xβ̂o) + λ2β̂

o
j = 0, ∀j ∈ O. (7.1)

If |β̂oj | ≥ γλ1, then ρ′(|β̂oj |;λ1) = 0. Since cmin + λ2 > 1/γ, the criterion (2.4) is strictly

convex. By the KKT conditions, β̂ = β̂o and sgn(β̂) = sgn(βo) in the intersection of the

events

Ω1(λ) =
{

max
j 6∈O

∣∣n−1x′j(y −Xβ̂o)
∣∣ < λ1

}
and Ω2(λ) =

{
min
j∈O

sgn(βoj )β̂
o
j ≥ γλ1

}
. (7.2)
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We first bound 1 − P(Ω1(λ)). Let β̂O = (β̂j, j ∈ O)′ and Z = n−1/2X. Let ΣO(λ2) =

ΣO + λ2IO. By (7.1) and using y = XOβ
o
O + ε,

β̂oO =
1

n
Σ−1
O (λ2)X

′
Oy = Σ−1

O (λ2)ΣOβ
o
O +

1√
n

Σ−1
O (λ2)Z

′
Oε. (7.3)

Thus

β̂oO − βoO =
1√
n

Σ−1
O (λ2)Z

′
Oε+ {Σ−1

O (λ2)ΣO − IO}βoO. (7.4)

It follows that

1

n
x′j(y −Xβ̂o) =

1

n
x′j{In − ZOΣ−1

O (λ2)Z
′
O}ε−

1√
n
x′jZO{Σ−1

O (λ2)ΣO − IO}βoO.

Denote

Tj1 =
1

n
x′j{In − ZOΣ−1

O (λ2)Z
′
O}ε, Tj2 = − 1√

n
x′jZO{Σ−1

O (λ2)ΣO − IO}βoO.

First consider Tj1. Write Tj1 = n−1/2σ‖aj‖(aj/‖aj‖)′(ε/σ), where aj = n−1/2{In−ZOΣ−1
O (λ2)Z

′
O}xj.

Since n−1/2‖xj‖ = 1, we have ‖aj‖ ≤ 1. By Lemma 1,

P(max
j 6∈O
|Tj1| ≥ λ1/2) ≤ P(n−1/2σmax

j 6∈O
|(aj/‖aj‖)′(ε/σ)| ≥ λ1/2)

≤ 2K1αn
σ log1/α(p− do + 1)√

nλ1

, (7.5)

where αn is given in (4.2).

For Tj2, we have Tj2 = n−1/2λ2x
′
jZOΣ−1

O (λ2)β
o
O. Since

n−1/2λ2|x′jZOΣ−1
O (λ2)β

o
O| ≤ λ2(c1 + λ2)

−1√c2‖βo‖,

we have |Tj2| < λ1/2 for every j if

λ1/2 > λ2(c1 + λ2)
−1√c2‖βo‖. (7.6)

Thus by (7.5), when (7.6) holds, 1− P(Ω1(λ)) ≤ π1.

Now consider the event Ω2. Let ej be the jth unit vector of length do. By (7.4),

β̂oj − βoj = Sj1 + Sj2, j ∈ O,

where Sj1 = n−1e′j(ΣO+λ2I)−1X ′Oε and Sj2 = −λ2e
′
j(ΣO+λ2I)−1βoO. Therefore, sgn(βoj )β̂

o
j ≥

γλ1 if |βoj |+ sgn(βoj )(Sj1 + Sj2) ≥ γλ1, which in turn is implied by

|Sj1 + Sj2| ≤ βo∗ − γλ1, ∀j.
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It follows that 1−P(Ω2(λ)) ≤ P(maxj∈O(|Sj1 +Sj2| > βo∗−γλ1). Since |Sj2| ≤ λ2‖βo‖/(c1 +

λ2), we have |Sj2| < (βo∗ − γλ1)/2 if βo∗ > γλ1 + 2λ2‖βo‖/(c1 + λ2). Similarly to (7.5), by

Lemma 1, when βo∗ > γλ1 + 2λ2‖βo‖/(c1 + λ2),

P(max
j∈O

(|Sj1 + Sj2| > βo∗ − γλ1) ≤ 2K1αn
σ
√
c2 log1/α(do + 1)√

n(βo∗ − γλ1)(c1 + λ2)
. (7.7)

By (7.7) and the restrictions on λ1 and βo∗ , 1− P (Ω2(λ)) ≤ π2. �

Proof of Theorem 2. Let

ỹ =

(
y

0p

)
, X̃ =

(
X

√
nλ2 Ip

)
,

where 0p is a p-dimensional vector of zeros. We have

β̂(λ) = argmin
b
{ 1

2n
‖ỹ − X̃b‖22 +

p∑
j=1

ρ(|bj|, λ1)}.

Thus the Mnet estimator can be considered an mcp estimator based on (ỹ, X̃).

Denote P̃B = X̃B(X̃ ′BX̃B)−1X̃ ′B. For m ≥ 1 and u ∈ IRn, define

ζ̃(u;m,O, λ2) = max

{
‖(P̃B − P̃O)v‖2

(mn)1/2
: v = (u′, 0′p)

′,O ⊆ B ⊆ {1, . . . p}, |B| = m+ |O|

}
.

Here ζ̃ depends on λ2 through P̃ . We make this dependence explicit in the notation. By

Lemma 1 of Zhang (2010), in the event

λ1 ≥ 2
√
c∗ ζ̃(y;m,O, λ2) (7.8)

for m = d∗ − do, we have

#{j : β̂j 6= 0} ≤ (K∗ + 1)do ≡ p∗.

Thus in the event (7.8), the original p-dimensional problem reduces to a p∗-dimensional

problem. Since p∗ ≤ d∗, the conditions of Theorem 2 implies that the conditions of Theorem

1 are satisfied for p = p∗. So the result follows from Theorem 1.

Specifically, let τn be as in (4.2) and λ∗n as in (4.7). Let π2 be as in (4.4). Denote

π∗1 = K1λ
∗
1/λ1.

We show that if λ1 > 2λ2
√
c2‖βo‖/(c1 + λ2), then

P
(
2
√
c∗ ζ̃(y;m,O, λ2) > λ1

)
≤ π∗1 + π3. (7.9)
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Therefore, by Theorem 1, we have

P(sgn(β̂) 6= sgn(βo) or β̂(λ) 6= β̂o(λ2)) ≤ π1 + π∗1 + π2 + π3. (7.10)

Then Theorem 2 follows from this inequality.

We now prove (7.9). By the definition of P̃ ,

‖(P̃B − P̃O)ỹ‖22 = y′{ZB(ΣB + λ2IB)−1Z ′B − ZO(ΣO + λ2IO)−1Z ′O}y, (7.11)

where ZB = n−1/2XB. Let PB(λ2) = ZB(ΣB + λ2IB)−1Z ′B and write PB = PB(0). We have

‖(P̃B − P̃O)ỹ‖22 = ‖(PB − PO)y‖22 + y′(PB(λ2)− PB)y − y′(PO(λ2)− PO)y. (7.12)

Let TB1 = ‖(PB − PO)y‖22 and TB2 = y′(PB(λ2) − PB)y − y′(PO(λ2) − PO)y. Let η =

λ1/(2
√
c∗). Note that (PB−PO)y = (PB−PO)ε, since y = XOβ

o+ε and O ⊆ B. Therefore,

TB1 = ‖(PB − PO)ε‖2.
Consider TB2. Since y = XBβ

o
B + ε, some algebra shows that

y′(PB(λ2)−PB)y = nβo′BZ
′
B(PB(λ2)−PB)ZBβ

o
B+2
√
nβo′BZ

′
B(PB(λ2)−PB)ε+ε′(PB(λ2)−PB)ε,

and nβo′BZ
′
B(PB(λ2)−PB)ZBβ

o
B = −nλ2‖βoB‖2 +nλ2

2β
o′
BΣ−1

B (λ2)β
o
B. These two equations and

the identity ‖βoB‖2 − ‖βO‖2 = 0 imply that TB2 = SB1 + S2 + SB3 + SB4, where

SB1 = 2
√
n{βo′BZ ′B(PB(λ2)− PB)− βo′OZ ′O(PO(λ2)− PO)}ε,

S2 = ε′{PO − PO(λ2)}ε,

SB3 = ε′{PB(λ2)− PB}ε,

SB4 = nλ2
2{βo′BΣ−1

B (λ2)β
o
B − βo′OΣ−1

O (λ2)β
o
O}.

Using the singular value decomposition, it can be verified that SB3 ≤ 0. Also, since βoB =

(βo′O, 0
′
|B|−do)

′ and by the formula of the block matrix inverse, it can be verified that SB4 ≤ 0.

Therefore,

TB1 + TB2 ≤ TB1 + |SB1|+ S2. (7.13)

Note that S2 ≥ 0. When α = 2, by Lemma 2 and Proposition 3 of Zhang (2010),

P( max
B:|B|=m+do

TB1 > mnλ2
1/(4c

∗)) ≤ K1
2
√
c∗
√
m{m log(p− do) + 1}1/α√

m
√
nλ1

.

When 1 ≤ α < 2, since PB − PO is a rank m projection matrix and there are
(
p−do
m

)
ways to

choose B from {1, . . . , p}, by Lemma 1,

P( max
B:|B|=m+do

TB1 > mnλ2
1/(4c

∗)) ≤ K1

αn2
√
c∗
√
m log1/α(m

(
p−do
m

)
)

√
m
√
nλ1

= K1

αn2
√
c∗ log1/α(m

(
p−do
m

)
)

√
nλ1

,

≤ K1
αn2
√
c∗{m log(p− do + 1)}1/α√

nλ1

,
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where K1 is a constant that only depends on the tail probability of the error distribution in

(A2b). Here we used the inequality log(
(
p−do
m

)
) ≤ m log(e(p− do)/m).

Let µo =
√
nZOβ

o
O. Since ZBβ

o
B = ZOβ

o
O = µo/

√
n, we have SB1 = 2µo′(PB(λ2) − PB −

(PO(λ2)− PO)}ε. Write SB1 = 2‖aB‖(aB/‖aB‖)′ε, where

‖aB‖ = ‖{PB(λ2)− PB − (PO(λ2)− PO)}µo‖ ≤ 2λ2‖µo‖
c∗ + λ2

.

Therefore,

P( max
B:|B|=m+do

SB1 > mnλ2
1/(8c

∗)) ≤ P
(4λ2‖µo‖
c∗ + λ2

max
B:|B|=m+do

|(aB/‖aB‖)′ε| >
mnλ2

1

8c∗

)
≤ K1αn

32c∗‖µo‖λ2 log1/α(
(
p−do
m

)
)

mnλ2
1(c∗ + λ2)

,

≤ K1αn
32c∗‖µo‖λ2m

1/α{log(p− do + 1)}1/α

mnλ2
1(c∗ + λ2)

.

By assumption, λ2‖µo‖ ≤ λ1/2(c1 + λ2) ≤ λ1/2(c∗ + λ2), thus

P( max
B:|B|=m+do

SB1 > mnλ2
1/(8c

∗)) ≤ K1αn
16c∗m1/α{log(p− do + 1)}1/α

mnλ1(c∗ + λ2)2
. (7.14)

For S2, by Lemma 1,

P(S2 > mnλ2
1/(8c

∗)) ≤ K1αn
8c∗σλ2

√
do log1/α(do + 1)

mn(c∗ + λ2)
. (7.15)

Inequality (7.10) follows from (7.13) to (7.15). �

23



References

Breheny, P. & Huang, J. (2009). Coordinate descent algorithms for nonconvex penal-

ized regression methods. Technical Report #403, Department of Biostatistics, Univer-

sity of Kentukey.

Breiman, L. (2001). Statistical modeling: The two cultures. Statist. Sci. 16, 199-215.

Chen, S. S., Donoho, D. L. & Saunders, M. A. (1998). Atomic decomposition by

basis pursuit. SIAM J. Sci. Comput. 20, 3361.

Chiang, A. P., Beck, J. S., Yen, H.-J., Tayeh, M. K., Scheetz, T. E., Swiderski,

R., Nishimura, D., Braun, T. A., Kim, K.-Y., Huang, J., Elbedour, K.,

Carmi, R., Slusarski, D. C., Casavant, T. L., Stone, E. M. & Sheffield,

V. C. (2006). Homozygosity mapping with SNP arrays identifies a novel Gene for

Bardet-Biedl Syndrome (BBS10). Proc. Nat. Acad. Sci. 103, 6287-6292.

Fan, J. & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its

oracle properties. J. Am. Statist. Assoc. 96, 1348-1360.

Frank, I. E. & Friedman, J. H. (1993). A statistical view of some chemometrics

regression tools (with Discussion). Technometrics. 35, 109-148.

Friedman, J., Hastie, Hoefling, H. & Tibshirani, R. (2007). Pathwise coordinate

optimization. Ann. Appl. Statist. 35, 302-332.

Fu, W. J. (1998). Penalized regressions: the bridge versus the lasso. J. Comp. Graph.

Statist. 7, 397-416.

Irizarry, R.A., Hobbs, B., Collin, F., Beazer-Barclay, Y.D,, Antonellis,

K.J., Scherf, U. & Speed, T.P. (2003). Exploration, normalization, and sum-

maries of high density oligonucleotide array probe level data. Biostatist. 4, 249-264.

Jia, J. & Yu, B. (2010). On model selection consistency of elastic net when p � n.

Statistica Sinica. 20, 595-611.

Mazumder, R., Friedman, J. & Hastie, T. (2009). SparseNet : Coordinate descent

with non-convex penalties. Tech Report. Department of Statistics, Stanford University.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Statist.

Soc. B. 58, 267-88.

24



Wu, T. & Lange, K. (2007). Coordinate descent procedures for lasso penalized regres-

sion. Ann. Appl. Statist. 2, 224-244.

Yuan, M. & Lin, Y. (2007) On the nonnegative garrote estimator. J. R. Statist. Soc.

B. 69, 143-161.

Zhang, C.-H. (2010). Nearly unbiased variable selection under minimax concave penalty.

Ann. Statist. 38, 894-942.

Zhang, C.-H. & Huang, J. (2008). The sparsity and bias of the lasso selection in

high-dimensional linear regression. Ann. Statist., 36, 1567-1594.

Zhao, P. and Yu, B. (2006). On model selection consistency of LASSO. J. Machine

Learning Res. 7, 2541 - 2563.

Zou, H. & Hastie, T. (2005). Regularization and variable selection via the elastic net.

J. R. Statist. Soc. B. 67, 301-320.

Zou, H. & Zhang, H. H. (2009). On the adaptive elastic-net with a diverging number

of parameters. Ann. Statist. 37, 1733-1751.

25



Table 1: Genes identified using the Enet and the proposed Mnet approach: gene names and

nonzero estimates.

Gene name Enet Mnet Gene name Enet Mnet

1367731 at 0.0156 0.0402 1378765 at -0.0013 -0.0020

1368701 at -0.0301 1379023 at 0.0106

1368887 at -0.0012 1379285 at 0.0004

1368958 at -0.0443 -0.0490 1379818 at 0.0078 0.0209

1369152 at 0.0250 1380050 at 0.0100 0.0366

1369484 at 0.0251 1380951 at 0.0235

1369718 at -0.0016 1381508 at 0.0065

1370434 a at -0.0083 -0.0223 1382193 at 0.0208

1370694 at 0.0002 1382365 at -0.0093

1371052 at 0.0157 0.0332 1385925 at -0.0004

1372975 at -0.0209 1391262 at 0.0209

1373005 at -0.0116 1392613 at -0.0022

1375426 a at 0.0467 1393555 at -0.0085

1376129 at 0.0164 0.0536 1394430 at 0.0085

1376568 at 0.0321 1394459 at 0.0041

1377651 at 0.0125 0.0404 1394689 at 0.0069

1387060 at 0.0173 0.0243 1394709 at 0.0003

1387366 at 0.0021 1394820 at 0.0252

1387902 a at 0.0059 1395172 at 0.0041

1389795 at 0.0043 0.0107 1396743 at 0.0016

1390238 at -0.0270 1397361 x at -0.0255

1390643 at -0.0281 1398594 at 0.0125

1378003 at 0.0014
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